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Analytical expressions have been derived that translate uncertain-
ties in distance constraints (obtained from NMR investigations) into
uncertainties in atom positions in the maximum likelihood (ML)
structure consistent with these inputs. As a test of this approach, a
comparison was made between test structures reconstructed by the
new ML approach, which yields a single structure and a covariance
matrix for coordinates, and those reconstructed by metric matrix
distance-geometry (MMDG), which yields a family of structures that
sample uncertainty space. The test structures used were 560 polyhe-
dra, with edges of arbitrary length containing up to 50 vertices, and
one polyhedron, with 100 vertices; randomized distance constraints
generated from these structures were used in reconstructing the
polyhedra. The uncertainties derived from the two methods showed
excellent agreement, and the correlation improved, as expected, with
increasingly larger numbers of MMDG structures. This agreement
supports the validity of the rapid analytical ML approach, which
requires the calculation of only a single structure. As a second test of
the ML method, the approach was applied to the determination of
uncertainties in the structure of a cyclic dipeptide, cyclo(DL-Pro-Gly)
(cPG), derived from NMR cross-relaxation data. The input data were
interproton distances calculated from NOEs measured for a solution
of the peptide in 2:1 DMSO:H2O at 240°C (so as to yield large
negative NOEs). In order to evaluate effects of the quality of the input
spectral parameters on the precision of the resulting NMR structure,
information from the covalent geometry of cPG was not used in the
structure calculations. Results obtained from the analytical ML ap-
proach compared favorably with those from the much slower ran-
dom-walk variant of the Monte Carlo method applied to the same
input data. As a third test, the ML approach was used with synthetic
structural constraints for a small protein; the results indicate that it
will be feasible to use this rapid method to translate uncertainties
associated with a given set of distance restraints into uncertainties in
atom positions in larger molecules. © 1998 Academic Press
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INTRODUCTION

Structures of biological macromolecules derived from NMR
data are based primarily on interproton distances deduced from
multidimensional cross-relaxation (NOESY) spectra (1, 2). A
starting model for the structure can be determined from distance-
geometry calculations from crude distance estimates, and then the
measured NOE intensities can be converted into refined interpro-
ton distances by application of the full relaxation matrix (FRM)
approach (3–5). These refined interproton distances finally can be
used as experimental constraints that coerce the macromolecular
structure into a more or less well defined conformational subspace
(6, 7).

NOE intensities and interproton distances are determined
experimentally only to within fairly broad error limits, and
the uncertainties arise from a variety of sources (8). The
problem that we address in this paper is how these errors
translate into uncertainties in atomic coordinates,i.e., how
to find the family of structures that satisfy the given ex-
perimental data set. This problem has been addressed by
several different approaches, all of which are deficient in
one way or another. The conventional approach, consisting
of random generation of families of structures consistent
with the input data, is time-consuming and potentially un-
reliable, because the methods for structure determination
may have limited capabilities for sampling conformational
space. Methods that compare back-calculated NOESY spec-
tra with an original experimental spectrum solve only one-
half of the problem: even if the derived structure back-
calculates into the original spectrum perfectly, it is not
known whether other structures, possibly quite different,
will back-calculate into the same spectrum. In addition, one
can encounter the paradox that the poorer the original spec-
trum, the better the comparison between the original and
back-calculated data. Similarly, refinement methods based
on calculating gradients of peak volumes with respect to
interproton distances (9, 10) fail to find the size of the
conformational subspace of proton pairs with small gradi-
ents when the minimum of the penalty function is broad.
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Both the heuristic approach based on random sampling of
distances with the use of doubly iterated Kalman filters (11)
and the Monte Carlo approach (8, 12) are computationally
costly. Few studies have taken into account the great vari-
ability in the signal-to-noise of the original cross-relaxation
data in assessing errors in individual distance constraints. In
this paper, we present a direct method, based on the maxi-
mum likelihood approach (13), for translating the experi-
mental NMR observations and their associated errors into
uncertainties in atomic coordinates.

THEORY

The experimental observations used to reconstruct the
molecular structure, collected in the column vectorE, in-
clude interproton distances derived from NOEs and dihedral
angles obtained from spin–spin couplings. The vectorE also
contains the bond lengths, valence angles, chiralities, and
planarity constraints that are imposed by the covalent struc-
ture of the molecule. The variances and covariances of the
experimental measurements along with uncertainties in the
covalent constraints, are contained in the variance matrixSE

whose dimensions areN 3 N, whereN represents the length
of the vectorE. The 3M nuclear coordinates of theM atoms
in the molecule are gathered in the vectorX and arranged so
that X3k22 5 xk, X3k21 5 yk, andX3k 5 zk (k 5 1, . . . , M).
Only 3M 2 6 coordinates are independent. Six constraint
functions,C1(X), . . . , C6(X), assembled in the vectorC, are
needed to account for three orientational and three transla-
tional degrees of freedom of the molecule as a whole.
Constraints are satisfied when all the constraint functions
become equal to zero. The goal is to find the set of values of
the coordinates,X0, that satisfies simultaneously the exper-
imental measurementsE0 and the constraintsC, and to
estimate the matrixSX of variances and covariances ofX0

knowing E0 and the matrixSE. The determination of the
most likely structure is achieved on employing the matrices
(Appendix; also see (13))

Q0 5 S ­E
­XD

X(0)

T

SE
21S ­E

­XD
X(0)

,

Q 5 F Q0 ~­C/­X !X(0)
T

~­C/­X !X(0) 0 G [1]

and vectors

R0 5 S ­E
­XD

X(0)

T

SE
21~E 2 E0!, R 5 F ~R0!

2C G
X(0)

, [2]

where0 is a zero matrix of dimensions 63 6 (cf. Appendix).
Initially, Eqs. [1]–[2] are evaluated using a guessX(0) for the
coordinates. The initial guess is improved by employing the
expression

@~X ~i11!!T l1 · · ·l6#
T 5 @~X ~i !!T 0 · · · 0#T 2 Q21R, [3]

whereli, i 5 1, . . . , 6 areintermediate results of no interest.
Equation [3] is used iteratively, and the iterated solutionX(i)

converges toward the maximum likelihood structureX0 within a
few steps provided thatE is an approximately linear function of
X. The desired variance matrixSX is found by truncating the
(3M 1 6) 3 (3M 1 6) matrixQ21 to the order 3M 3 3M. Finally,
the area of space that is statistically accessible to each atom “k”
(k 5 1, . . . ,M) is visualized approximately by drawing an ellip-
soid centered at the most likely atom position (xk0, yk0, zk0) and
determined by the 33 3 submatrixSk from the diagonal of the
matrixSX. The submatricesSk are composed of the variances and
covariances of coordinates of the atomk (11). The axes of the
ellipsoid coincide with the principal axes of the matrixSk, and the
lengths of the axes are square roots of the eigenvalues ofSk.

The ML procedure described above computes uncertainties in
Cartesian coordinates, and so its results depend on the choice of
the frame of reference. This unwanted dependence on the arbitrary
choice of the frame of reference is eliminated by extending the
analysis to the chemically relevant internal descriptors of the
molecular geometry, such as dihedral angles. These internal co-
ordinates are invariant to the choice of reference frame. The
variances and covariances in dihedral angles or other geometric
descriptors (vectorF) of the molecular structure can be found
easily (14) as

SF 5 ~­F/­X !TSX~­F/­X !. [4]

The assumption that second- and higher-order terms in the
Taylor expansion ofE(X) are negligible is essential for successful
evaluation of both the maximum likelihood structure andSX.
Cross-relaxation rates are strongly nonlinear functions of the
relevant coordinates within the interval of60.5 Å, whereas dis-
tancesDij often vary almost linearly with coordinates within much
wider ranges. The expressions that are available for the first
derivatives of NOE intensities with respect to coordinates (9, 10)
can be used only when the distance errorsdDij are relatively small.
Finite distance errors require computation of the second deriva-
tives, which would render the method impractical. That is the
reason why the present method calculates error propagation from
internuclear distancesDij, which are “secondary” experimental
observations, rather than from the cross-relaxation rates, which
are the “primary” experimental data (14). Therefore, theN 3 3M
matrix (­E/­X)X0

, used above, contains the elements

@~­Dij /­ xk! ~­Dij /­ yk! ~­Dij /­ zk!#X0

5 @ xi 2 xj yi 2 yj zi 2 zj#X0~d ik 2 d jk!/Dij , [5]

where d ij 5 1 if i 5 j , 0 otherwise. We have chosen to
estimate the uncertainties in the distances (i.e., the diagonal
elements of the matrixSE) from the lower and upper bounds,
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Lij andUij , respectively, assuming that distances are uniformly
distributed within their limits:

^dDij
2& 5 ~Uij 2 Lij !

2/12. [6]

The matrixQ0 (Eq. [1]) is singular because of the interde-
pendence of the coordinates. The inversion ofQ0 (Eq. [3]) is
made possible by augmenting it with the blocks containing
derivatives of the constraint functionsCi(X) (Eq. [1]). A con-
venient choice of constraints includes the condition that the
origin is located at the center of mass

C1~X ! ; O
k51

M

xk, C2~X ! ; O
k51

M

yk, C3~X ! ; O
k51

M

zk [7]

and that the axes of the reference frame coincide with the
principal axes of the inertia tensor

C4~X ! ; O
k51

M

xkyk, C5~X ! ; O
k51

M

xkzk,

C6~X ! ; O
k51

M

ykzk. [8]

When the constraints are given by Eqs. [7]–[8], the 63 3M
matrix (­Ck/­X)X0

becomes

S­Ck

­X D
X0

53
1 0 0 1 0 0 · · · 1 0 0
0 1 0 0 1 0 · · · 0 1 0
0 0 1 0 0 1 · · · 0 0 1
y1 x1 0 y2 x2 0 · · · yM xM 0
z1 0 x1 z2 0 x2 · · · zM 0 xM

0 z1 y1 0 z2 y2 · · · 0 zM yM

4
X0

.

[9]

EXAMPLES

Arbitrarily Generated Polyhedra

As an initial test of the method, comparisons were made be-
tween structures and their uncertainties calculated from the same
set of input distances by the new maximum likelihood (ML)
approach and by the conventional metric matrix distance-geome-
try (MMDG) method. In order to keep the calculations small, but
still test possible effects of differing geometry on the outcome,
both methods were applied to a series of 563 arbitrarily generated
polyhedra. The sizes of polyhedra (their numbers of vertices)
ranged from 4 to 50; in addition, one polyhedron with 100 vertices

was included. For each polyhedron size, between 5 and 15 poly-
hedra were constructed with their vertices positioned randomly
within a cube, 20 Å/edge. The errors in distances were confined to
60.6 Å. The ML approach was applied both to reconstruct the
known target vertex positions (from the exact distances) and to
calculate their uncertainties (from the uncertainties in these dis-
tances). The MMDG ensembles were generated in the usual
manner in which protein structures are calculated from NMR data:
bounds were imposed on distances in such a way that Eq. [6] was
satisfied; triangular inequalities were used to smooth both upper
and lower bounds; trial values for distances were generated ran-
domly within the smoothed bounds and used as inputs for MMDG
to reconstruct the initial polyhedra. No metrization was employed.
The embedded structures were projected into three dimensions
and regularized to eliminate violations of distance bounds. Suc-
cessfully regularized structures were accepted, while those with
residual violations or with incorrect chiralities of substructures
were discarded, and the procedure was repeated until 100–500
structures were accumulated for each polyhedron. As an example,
an MMDG ensemble created for a sextahedron is shown on Fig.
1A, together with the ML results.

In all the polyhedra of all different sizes, the variances and
covariances of coordinates calculated with the ML and MMDG
approaches were virtually the same when the ensembles were
sufficiently large (Figs. 1B, 1D). However, as the complexity
of the system under study increased, sampling of conforma-
tional space by MMDG structure generation required progres-
sively more time, encountered more difficulties, and became
less reliable than the ML method. As an illustration, we ran-
domly assembled subsets of structures from each ensemble and
calculatedr2 between the ML covariances and the MMDG
covariances computed from the subsets. The variations of these
r2 values as functions of the sub-ensemble sizes are displayed
in Fig. 1C. In all cases,r2 increased monotonically with the
sub-ensemble size, suggesting that eventually MMDG results
must converge toward the ML results and thus validating ML.
These examples reinforce two conclusions: (a) ML gives the
same results as MMDG in the limit of infinitely large ensem-
bles, and (b) ML does so in a much shorter time.

Cyclic Dipeptide cyclo(DL-Pro-Gly)

As a second test of the method, error propagation from NOE
measurements into the positions of hydrogen atoms was examined
in the cyclic dipeptidecyclo(DL-Pro-Gly) (cPG). The dipeptide
consists of 21 atoms, including 10 protons. The geometry of the
dipeptide is completely determined by its covalent structure.3 This

3 The optimal independent set of distances incPGallwas obtained by analyzing
the relevant pentangles (methodA in the text). There are 3N 2 6 5 57 independent
distances and they connect the following pairs of atoms:NPro–CPro

a , NPro–HPro
a ,

NPro–CPro
b , NPro–CPro

g , NPro–CPro
d , NPro–HPro

dR , NPro–HPro
dS , NPro–C9Pro, NPro–CGly

a ,
NPro–C9Gly, NPro–OGly, CPro

a –HPro
a , CPro

a –CPro
b , CPro

a –HPro
bS, CPro

a –HPro
bR, CPro

a –CPro
g ,

CPro
a –CPro

d , CPro
a –C9Pro, CPro

a –OPro, CPro
a –NGly, CPro

a –C9Gly, CPro
a –OGly, HPro

a –CPro
b ,

HPro
a –C9Pro, CPro

b –HPro
bS, CPro

b –HPro
bR, CPro

b –CPro
g , CPro

b –HPro
gR, CPro

b –HPro
gS , CPro

b –CPro
d ,

HPro
bS–HPro

bR, HPro
bS–CPro

g , CPro
g –HPro

gR, CPro
g –HPro

gS , CPro
g –HPro

dR , CPro
g –HPro

dS , HPro
gR–HPro

gS ,
HPro

gR–CPro
d , CPro

d –HPro
dR , CPro

d –HPro
dS , CPro

d –C9Gly, C9Pro–OPro, C9Pro–NGly, C9Pro–HGly
N ,
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was demonstrated by using X-PLOR (15) to calculate the posi-
tions of all atoms from tight bounds imposed on all covalent
distances (bond lengths, distances between geminal neighbors,
and peptide bond planarities) and no bounds at all on non-covalent
distances. The resulting all-atom structure, labeledcPGall, is
well-defined and rigid, in spite of the fact that it was calculated in
absence of any experimental NMR data. Thus, when the covalent
information is used, experimental errors become completely
masked by the high precision of the covalent bond lengths, va-
lence angles, and planarity constraints.

In order to establish relationships between input experimen-

tal NMR data and the quality of the resulting structure, we
eliminated the geometric information contained in the covalent
structure by considering only the substructure consisting ex-
clusively of protons (cPGH). The uncertainties in the structure
of cPGH were calculated, using as input only the interproton
distances derived from a full relaxation matrix analysis of
NOESY spectra collected at a mixing time of 80 ms (Table 1).
The interproton distances were classified into six categories
depending on whether the values calculated from the full
relaxation matrix fell within one of the following ranges:,2.0
Å, 2.0–2.5 Å, 2.5–3.2 Å, 3.2–4.0 Å, 4.0–5.0 Å, and.5.0 Å.
The following lower and upper bounds pairs were imposed on
the distances belonging to the first five classes: (1.6, 1.9) Å,
(2.0, 3.0) Å, (2.2, 3.7) Å, (2.8, 4.8) Å, and (2.3, 6.6) Å,
respectively. The upper bounds for the distances in the sixth
class were obtained by adding 1.5 Å to the value obtained from

C9Pro–CGly
a , OPro–NGly, NGly–HGly

N , NGly–CGly
a , NGly–HGly

aR , NGly–HGly
aS , NGly–C9Gly,

HGly
N –CGly

a , CGly
a –HGly

aR , CGly
a –HGly

aS , CGly
a –OGly, HGly

aR–HGly
aS , andHGly

aR–C9Gly. These
independent distances are all known from the covalent structure and their uncer-
tainties are negligibly small.

FIG. 1. (A) Areas of uncertainties in vertex positions in an arbitrarily constructed sextahedron, as calculated by the ML approach (ellipsoids) and as derived
from the MMDG ensemble of structures that satisfy the constraints imposed on internode distances (points). (B) Correlation between covariances of coordinates
of the sextahedron obtained from a discrete ensemble (abscissa) and with the ML approach (ordinate) (r2 5 0.985). (C) Thevariation of correlation coefficient
valuesr2 between ML and MMDG covariances of coordinates in 563 polyhedra as a function of the size of MMDG ensembles. The gray area represents two
standard deviations around the averager2 values. Maximal and minimalr2 values are also shown as functions of the ensemble sizes. (D) Correlation between
covariances of coordinates of 563 polyhedra obtained from discrete ensembles (abscissa) and with the ML approach (ordinate). The gray area represents one
standard deviation around the average (continuous line in the center). The ideal straight line with a slope of 1 is shown for comparison, as well as the range of
variation. More than 105 data points were used after being divided with normalization factors of the form max[d( xyz)] 2 min[d( xyz)], which were different
for each polyhedron and which served to scale the coordinate covariances for various polyhedra so they can fit the same display window.

457ERROR PROPAGATION IN NMR STRUCTURE DETERMINATION



the full-relaxation matrix calculations, and their lower bounds
were fixed at 3.2 Å. Thus defined, the bounds ranges obtained
from the experiment are identical to those inferred bycPGall
or overlap with them significantly. None of the interproton
distances incPGall violates the experimental lower and upper
bounds. Prior to use, the distance bounds were smoothed using
the triangular inequality (7).

An attempt was made to create an MMDG ensemble in the
same fashion as for the arbitrarily generated polyhedra. How-
ever, the gaps between lower and upper bounds on interproton
distances were large enough to allow many different combina-
tions of chiralities for four-proton subsets withincPGH.
MMDG ensembles created in the usual way contained, there-
fore, a huge number ofcPGH structures with wrong local
chiralities and only a negligible fraction of structures with
correct chiralities. This situation was not improved when a
penalty term for chiralities was incorporated into the regular-
ization procedure.

Therefore, to enable comparison between ML and a statis-
tical ensemble, a procedure was devised which produced a high
yield of structures that belong to the same class ascPGH.This
procedure, which we call “restrained random-walk Monte
Carlo” (rrwMC) is somewhat similar to theCONCOORD
method of de Grootet al. (17); the difference is thatrrwMC
makes a random search outward from an initial structure to
probe conformational space until violations are found, whereas
CONCOORD starts from a conformational excursion from a
RANDOM initial structure that leads to violations and searches
randomly until the violations vanish. The starting structures
used withrrwMC were those found incPGall. Small steps are
made in randomly chosen directions, with the step size (#0.01
Å) small when compared with the uncertainties in the inter-
proton distances. If a step results in a violation of a distance
bound, the procedure bounces back, ensuring that the distance
bounds are never violated and that the whole trajectory remains
confined within the same class of conformers as the initial,
correct conformation (cPGall). To prevent the trajectory from
remaining too close to the initial conformation, the procedure
retracts only the increments to coordinates of the proton pair
whose distance bound was violated. Other protons, not in-
volved in distance bounds violations, retain their newly ac-
quired positions. Although, in principle, this could create new
violations of distance bounds between protons whose positions
are updated and those whose coordinates were retracted, it
rarely happened in practice. Also, it turned out that correct
chiralities were maintained without the need for any special
manipulations. All the relevant chiralities remained correct
throughout the restrained random walk, which enabled fast
creation of a largerrwMC ensemble (710 structures). For each
member of the ensemble, the Brownian-like motion freezes
after a randomly selected number of steps. The length of the
trajectory ranged from 1,000 to 10,000 steps. Termination of
the conformation space search left the structure somewhere
within the “allowed” area of the space that needed to be
sampled. TherrwMC ensemble was large enough to fill this

TABLE 1
Interproton Distances in cPGa

Proton 1 Proton 2

Lower
boundsa

(Å)

Upper
boundsa

(Å)
Distancesb

(Å)

Standard
deviationsc

(Å)

HPro
a HPro

bS 2.0 2.9 2.4 0.3
HPro

a HPro
bR 2.2 3.7 3.0 0.3

HPro
a HPro

gR 2.2 3.7 2.9 0.3
HPro

a HPro
gS 2.8 4.8 3.9 0.4

HPro
a HPro

dR 2.8 4.8 3.4 0.4
HPro

a HPro
dS 2.8 4.8 3.9 0.4

HPro
a HGly

N 2.8 4.8 3.9 0.4
HPro

a HGly
aR 2.2 3.7 3.1 0.3

HPro
a HGly

aS 3.2 5.6 4.3 0.4
HPro

bS HPro
bR 1.6 1.9 1.8 0.1

HPro
bS HPro

gR 2.0 2.9 2.4 0.3
HPro

bS HPro
gS 2.2 3.7 2.7 0.3

HPro
bS HPro

dR 3.2 5.8 4.1 0.4
HPro

bS HPro
dS 3.2 5.6 4.0 0.4

HPro
bS HGly

N 3.2 6.7 5.0 0.4
HPro

bS HGly
aR 3.2 6.6 5.3 0.4

HPro
bS HGly

aS 3.2 8.2 5.9 0.4
HPro

bS HPro
gR 2.2 3.7 3.0 0.3

HPro
bR HPro

gS 2.0 2.9 2.4 0.3
HPro

bR HPro
dR 2.8 4.8 3.9 0.4

HPro
bR HPro

dS 2.2 3.7 3.1 0.3
HPro

bR HGly
N 3.2 6.0 4.3 0.5

HPro
bR HGly

aR 3.2 6.8 5.0 0.4
HPro

bR HGly
aS 3.2 7.0 5.2 0.4

HPro
gR HPro

gS 1.6 1.9 1.8 0.1
HPro

gR HPro
dR 2.0 2.9 2.4 0.3

HPro
gR HPro

dS 2.2 3.7 3.0 0.3
HPro

gR HGly
N 3.2 8.5 6.2 0.5

HPro
gR HGly

aR 3.2 7.4 5.5 0.4
HPro

gR HGly
aS 3.2 8.6 6.2 0.4

HPro
gS HPro

dR 2.2 3.7 2.8 0.3
HPro

gS HPro
dS 2.0 2.9 2.4 0.3

HPro
gS HGly

N 3.2 8.7 6.2 0.5
HPro

gS HGly
aR 3.2 8.5 6.1 0.4

HPro
gS HGly

aS 3.2 8.9 6.4 0.4
HPro

dR HPro
dS 1.6 1.9 1.8 0.1

HPro
dR HGly

N 3.2 8.0 5.8 0.5
HPro

dR HGly
aR 3.2 6.3 4.6 0.5

HPro
dR HGly

aS 3.2 6.7 5.0 0.4
HPro

dS HGly
N 3.2 7.2 5.3 0.5

HPro
dS HGly

aR 3.2 6.6 4.8 0.5
HPro

dS HGly
aS 3.2 6.4 4.7 0.5

HGly
N HGly

aR 2.2 3.7 2.7 0.3
HGly

N HGly
aS 2.0 2.9 2.3 0.3

HGly
aR HGly

aS 1.6 1.9 1.8 0.1

a The bounds on interproton distances were calculated from NOESY data
acquired at 500 MHz (Bruker AMX) for a mixing time of 80 ms at 233 K. The
sample was 50-mM cyclo(DL-Pro-Gly) (cPG, Sigma) dissolved in 2:1 volume
mixture of DMSO-d6:H2O. At this temperature, the dipeptide behaves like a
small protein at room temperature in water (tc 5 4 ns, as estimated from the
cross-relaxation rate of 7 s21 between geminal protons). Errors in all NOE
intensities were estimated from NOESY cross-peak volumes at zero mixing
time to be60.015. Triangular smoothing was applied both to upper and lower
bounds.

b Interproton distance values were derived fromcPGallcalculated by X-PLOR (15).
c Standard deviation for interproton distances were derived from the statis-

tical ensemble cPGrrw.
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whole area (dots in Fig. 2A), enabling a meaningful compari-
son with the ML results (ellipsoids in Fig. 2A).

In most cases, the distribution of distances within the dis-
creterrwMC ensemble was nonuniform and narrow around the
most likely value of a distance. To account for this, we esti-
mated the input uncertainties in distances from the discrete
ensemble, rather than using Eq. [6]. The ML covariances for
the proton Cartesian coordinates incPGH were derived from
the dispersions in interproton distances using Eqs. [1], [5], and
[9]. The center of mass and products of inertia incPGH were
fixed in these calculations. When Eq. [3] was used with exper-
imental interproton distances, the ML proton positions were
close to those found incPGall. ML proton coordinates calcu-
lated with interproton distances extracted fromcPGall are
identical to those incPGall (Fig. 2A). The ellipsoids in Fig. 2A
visualize the ML uncertainties in the proton coordinates of
cPGH.The structure of the whole molecule (cPGall) is super-

imposed on these for comparison. The correlation found be-
tween the ML results and the covariances from therrwMC
ensemble improved with the size of therrwMC ensemble,
reaching the valuer2 5 0.862 when the complete ensemble
(710 structures) was used for the comparison (Fig. 2B). This
trend suggests that in the limit of an infinitely largerrwMC
ensemble, the results from two methods will converge. The
advantage of the ML approach is obvious.

Figure 2C shows correlations between two consecutive di-
hedral angles in thecPGH proton subsystem. The ellipse is
calculated from covariances of the two torsion angles (Eq. [4]),
whereas the points represent the values of the dihedral angles
from the discrete ensemble of structures. Figure 2D shows
covariances of 3192 consecutive pairs of dihedral angles within
the proton subsystem of cPG calculated from therrwMC
ensemble (abscissa) and with the ML approach (ordinate). The
correlation found between the covariances obtained by the two

FIG. 2. (A) Conformational space of the proton subsystem ofcyclo(DL-Pro-Gly) (cPGH) consistent with the experimental NOE data, estimated using the
ML approach (ellipsoids) andrrwMC discrete ensemble (dots). The discrete ensemble consists of structures whose interproton distances are consistent with the
NOESY spectrum recorded at 80 ms mixing time (Table 1). The structure of the molecule as a whole (cPGall) is superimposed on the proton substructure. (B)
Correlation between covariances and variances for coordinates obtained from the discrete ensemble of structures (abscissa) and those obtained analytically using
the ML approach (ordinate) (r2 5 0.862). (C)Correlation diagram of two consecutive dihedral anglesHPro

a –HPro
bS–HPro

bR–HPro
gR andHPro

bS–HPro
bR–HPro

gR –HPro
gS . Dots

are values of the dihedral angles obtained from the discrete ensemble of structures. The ellipse was calculated from the ML matrix of covariances of the torsion
angles (Eq. [4]). (D) Covariances of 3192 pairs of consecutive torsion angles within the proton subsystem (cPGH) obtained from the discrete ensemble of
structures (abscissa) and with the ML approach (ordinate) (r2 5 0.917).
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methods (r2 5 0.917 for allprotons;r2 5 0.968 forprotons
within the proline ring) shows that the ML approach can be
applied successfully to determine uncertainties in the descrip-
tors of the molecular geometry that are invariant to the choice
of the frame of reference. The dependence of the linear corre-
lation coefficientr2 on the size of the MC ensemble is similar
to that observed for Cartesian coordinates.

In terms of computational cost, the limiting step of the ML
procedure is inversion of the matrix Q (Eq. [1]). To test
whether the method will be useful for evaluating protein struc-
tures determined from NMR data, we applied ML to simulated
NOE constraints plus the usual covalent constraints for a small
protein (turkey ovomucoid third domain, OMTKY3).
OMTKY3 has;800 atoms and the size of the inverted matrix
is '2400 3 2400. Both the MATHEMATICA (16) and the
FORTRAN implementations of the ML method required only
about 10 min of CPU time to invert the matrix on SGI Iris or
on IBM RISC R/6000 workstations. The precision of the
inverted matrix was excellent, as judged from the unit matrix
obtained as the product of the original and the inverted matri-
ces Q, even with the single precision FORTRAN implemen-
tation (data not shown). The fact that the matrix Q is composed
of sparse matrices implies that it should be possible to use
sparse matrix algorithms to achieve a significant reduction in
the time needed to invert Q. When Eq. [3] was used to improve
a distorted OMTKY3 structure which contained constraint
violations, the resulting ML structure of OMTKY3 had no
constraint violations. This suggests that ML could be useful as
a refinement step.

All the calculations (ML, bounds smoothing, MMDG, reg-
ularization,rrwMC, full relaxation matrix calculations, selec-
tion of independent distances, and molecular graphics) were
performed with our own software written in MATHEMATICA
or FORTRAN (18).

DISCUSSION

The somewhat arbitrary choice of lower and upper distance
bounds incPGHwas made to imitate the procedure in wide use
for proteins (19). In the present form of the approach, one can
account for internal molecular mobility by increasing the error
ranges on distances, as is done with pseudoatoms. When dis-
tance constraints imposed on atoms are insufficient to fix their
positions, i.e., when they allow free rotation of groups of
atoms, the areas of maximum likelihood for such atoms are
rings. This violates the starting assumption that the probability
distribution is unimodal and can be approximated by a Gauss-
ian (cf. Appendix). The rows and columns of the matrixQ (Eq.
[1]) which correspond to the coordinates of these atom groups
are inversely proportional to the relatively large error ranges in
the distances connecting them to the rest of the molecule. The
elements of these rows and columns are therefore much smaller
than the remaining matrix elements, and the condition number
of the matrix is large (compared to the inverse of the machine
precision). The calculated uncertainties in the underdetermined

atom positions are grossly overestimated. However, in spite of
dealing with an ill-conditioned matrix, the matrix inversion
yielded covariances in coordinates of the remaining atoms that
were largely unaffected by the lack of information localized at
the underdetermined groups (data not shown).

The procedure described here is valid within the immediate
vicinity of the maximum of the probability distribution for the
coordinates. It employs derivatives and therefore only accounts
for the continuous contributions to the overall uncertainties in
coordinates. When the procedure is applied to only one, among
several, distinct local probability maxima (discrete classes of
conformers), the uncertainties contributed by the other discrete
classes of conformers remain unaccounted for. One way to ad-
dress this problem would be to identify the optimal set of 3N 2 6
independent distances, use them to reconstruct the whole set of
discrete classes of conformers, and apply the maximum likelihood
method to each probability maximum separately. A set of dis-
tances is independent if the rank of its Jacobian with respect to
coordinates is 3N 2 6. It is optimal if the sum of dispersions of its
elements is minimal compared to all other independent sets. When
the structure contains several dozens of points or less, as in cPG,
the optimal independent distances can be selected from the dis-
tances with minimal error ranges by scanning pentangles that
contain the “candidate” distance and by using the fact that a
pentangle contains one dependent and nine independent distances
(methodA). The inclusion of a dependent distance into the inde-
pendent set is thus prevented. We used methodA to identify the
optimal set of independent distances incPGall (see Footnote 3).
Independent distances in larger molecules can be identified
quickly by the “anchoring” algorithm used by Altman and Jar-
detzky (11) in their stepwise inclusion of structural motifs in the
course of heuristic structure building (methodB). Once identified,
the independent distances can be used to build the structure, either
by constructing pentangles (methodA) or by successive anchoring
of new points (methodB). In cases where a pentangle within the
structure can adopt two different configurations, the ambiguity
can be removed on the basis of chirality constraints (if available
for that pentangle), by tightening the error ranges on the distances
within the pentangle by means of tetrahedral bounds smoothing,
or by analyzing inconsistent distances from the pentangle to points
that have already been “anchored.” A combinatorial explosion of
conformations thus can be avoided. If the input data set is such
that ambiguities cannot be eliminated, the procedure results in
multiple structures that are representative of discrete classes of
conformers. Although these are probably not the most likely
structures, they can be used as starting points in the iterative
search for the maximum likelihood structures within their respec-
tive discrete classes.

Our approach analyzes the precision of NMR-derived mo-
lecular structures, as opposed to their accuracy (20, 21). The
heuristic approach to structure building, which makes use of
Kalman filters (11), yields uncertainties in coordinates as a
byproduct. That approach, in analogy to our method, uses
matrices of covariances to determine ellipsoids of uncertainties
in atomic positions. The essential difference between the two
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approaches is that the heuristic method bases its estimates of
covariances on iterative sampling of distances, whereas the ML
procedure uses analytical formulae to determine the covari-
ances in a single computational cycle. Similarly, the advantage
of the ML approach over Monte Carlo (MC) simulations
(8, 12) again is that ML needs only asinglecycle of compu-
tation to evaluate the size of the conformational space com-
patible with the experimental data. A prohibitively large num-
ber of lengthy computational cycles must be performed with
MC to obtain comparable results.

The often-used assumption (22) that distances of equal lengths
have the same error ranges is not always justified (23, 24). The
true error limits on a distance depend on its value, the surrounding
cross-relaxing network, and details of the experiment, such as the
mixing time. Simulations of NOESY data corresponding to dif-
ferent mixing times indicate, as expected, that the optimal mixing
time varies for different proton pairs (23, 24) and that the overall
uncertainty in a given distance increases when the mixing time is
either too short or too long. Uncertainties in distance constraints
can be decreased by buildup curve analysis of data acquired at
different mixing times or by using specialized pulse sequences,
such as BD-NOESY (25) or CBD-NOESY (26), with a single
mixing time. The effects these approaches have on the precision
of structures can now be evaluated by the ML approach in a rapid,
quantitative manner.

Although the discussion above has focused on errors prop-
agated from distances derived from NOE data, errors in mea-
sured couplings can be incorporated straightforwardly into the
procedure. The method is applicable to structures obtained
with any method currently available (for instance MMDG or
simulated annealing).

CONCLUSIONS

In summary, this new method of quantifying error propaga-
tion in NMR structure calculations provides a means to assess
the reliability of NMR-derived structures. The approach should
be applicable to the validation of conclusions concerning bio-
active conformations and mechanisms of ligand binding or
enzyme catalysis. Moreover, the method should make it pos-
sible to design improved strategies for NMR structure deter-
mination or refinement in which the most relevant structural
data are collected in the most efficient manner.

APPENDIX: MAXIMUM LIKELIHOOD
WITH CONSTRAINTS

A molecule withM atoms has 3M nuclear coordinates, but
only 3M 2 6 coordinates are independent. Six constraints
must be considered to account for the mutual dependence of
coordinates. The constraints have been incorporated into the
maximum likelihood equations according to the procedure
described by Taupin (13). The numberN of experimental
observations and covalent constraints, gathered in the vectorE,
must satisfy the conditionN . 3M 2 6. The column vector

E0 represents the value ofE obtained in the actual measure-
ment. The diagonal elements of theN 3 N variance matrixSE

are squared experimental errors. The 3M coordinates are
grouped in the vectorX 5 [ x1 y1 z1

. . . xM yM zM]. The
maximum likelihood approach estimates the most likely values
of the coordinates,X0, and their variance-matrix,SX, as the
position and the width, respectively, of the peak of thea
posteriori conditional probabilityp(XuE 5 E0). The function
p(XuE 5 E0) represents the probability density forX when the
measured valuesE0 of observablesE are known with experi-
mental errorsSE. The conditional probabilityp(XuE 5 E0) is
obtained from the assumed Gaussian conditional probability
distribution p(XuE 5 E0) that the experimental observables
(internuclear distances) will take valuesE knowing that the
theoretical parameters (nuclear coordinates) have the valuesX0

p~EuX 5 X0! 5 @Î2p det~SE!#21

3 exp@21
2
~E 2 E0!

TSE
21~E 2 E0!#, [A1]

whereE 5 E(X) andE0 5 E(X0).
To determinep(XuE 5 E0), thea priori probability distribution

for the coordinates,pap(X), is also needed. There is no prior
knowledge about the atomic coordinates, andpap(X) is therefore
uniform over the whole space allowed. However, the six con-
straints on coordinates reflecting the translational and rotational
degrees of freedom of the molecule as a whole must be incorpo-
rated into thea priori distribution pap(X). That is achieved by
multiplying the uniform distribution with Dirac delta-functions
that enforce the constraints on the coordinates (13):

pap~X ! 5 const1 P
i51

6

d@Ci~X !#

5
const1
~2p!3 P

i51

6

lim
si30

1

si
exp@2Ci~X !2/~2si

2!#. [A2]

The delta-functions in Eq. [A2] are represented as the limiting
cases of Gaussian distributions with vanishing widths. The
termsCi(X) stand for the constraint functions (cf. Eqs. [7]–[8],
main text); a set of coordinatesX satisfies the constraints when
Ci(X) 5 0, @i .

The determination ofp(XuE 5 E0) also requires the knowl-
edge of thea priori probability pap(E0) that the observables
will take the valuesE0. The distributionpap(E0) is the projec-
tion of the joint probability p(E0uX) pap(X) of simultaneous
occurrence ofE0 andX

pap~E0! 5 E
X

p~E0uX ! pap~X !dX . [A3]
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Equations [A1]–[A3], combined with the Bayes formula

p~X uE 5 E0! pap~E0! 5 p~E0uX ! pap~X ! [A4]

lead to the following expression for the desireda posteriori
conditional probabilityp(XuE 5 E0)

p~X uE 5 E0! 5
p~E0uX ! pap~X !

*X p~E0uX ! pap~X !dX

5 const2 exp@21
2

~E 2 E0!
TSE

21~E 2 E0!#

3 P
i51

6

lim
si30

exp@2Ci~X !2/~2si
2!#

5 const2 expF21
2

~X 2 X0!
TS ­E

­XD T

3SE
21S ­E

­XD ~X 2 X0!

3 P
i51

6

lim
si30

exp@2Ci~X !2/~2si
2!#, [A5]

where the functional dependence ofE uponX

E 5 E~X ! ; F E1~ x1, y1, z1, . . . , xM, yM, zM!
···

EN~ x1, y1, z1, . . . , xM, yM, zM!
G [A6]

was approximated by the truncated Taylor series

E 5 E~X0! 1 S ­E
­XD

X0

~X 2 X0!

1
1
2

~X 2 X0!
TS ­2E

­X 2D
X0

~X 2 X0!· · ·; E~X0!

1 F ~­E1/­ x1! · · · ~­E1/­ zM!
···

···
···

~­EN/­ x1! · · · ~­EN/­ zM!
G

X0

(X 2 X0)

1
1
2

~X 2 X0!
T33 S­2E1

­ x1
2 D · · · S ­2E1

­ x1­ zM
D

···
···

···S ­2E1

­ x1­ zM
D · · · S­2E1

­ zM
2 D 4

3 3 S­2E2

­x1
2D · · · S ­2E2

­x1­zM
D

···
···

···S ­2E2

­x1­zM
D · · · S­2E2

­zM
2 D 4 · · ·

3 3 S­2EN

­x1
2 D · · · S ­2EN

­x1­zM
D

···
···

···S ­2EN

­x1­zM
D · · · S­2EN

­zM
2 D 4

X0

T

~X 2 X0! 1 . . .

[A7]

assuming that quadratic and higher-order terms are negligible
within the (still unknown) region of uncertainties of the coor-
dinates.

Approximating, on the other hand, thea posteriori condi-
tional probability distributionp(XuE 5 E0) with a Gaussian
function

p~X uE 5 E0! 5 @Î2p det~SX!#21

3 exp[21
2

~X 2 X0!
TSX

21~X 2 X0!] [A8]

and assuming that the variation of the matrixSX
21 with X is

negligible, one can find the uncertainties in the coordinates,
SX, from the width of the peak ofp(XuE 5 E0) at X0

SX
21 5 2F­2ln p~X uE 5 E0!

­X 2 G
X0

5 23
S­2ln p

­X1
2 D

S­2ln p

­X1
DS­2ln p

­X2
D

···S­2ln p

­X1
DS­2ln p

­X3M
D

3

S­2ln p

­X1
DS­2ln p

­X2
D · · · S­2ln p

­X1
DS­2ln p

­X3M
D

S­2ln p

­X1
2 D · · · S­2ln p

­X2
DS­2ln p

­X3M
D

···
···

···S­2ln p

­X2
DS­2ln p

­X3M
D · · · S­2ln p

­X3M
2 D 4

X0

5 S ­E
­XD

X0

T

SE
21S ­E

­XD
X0

1 O
i51

K

lim
si30

1

si
2 3

S ­Ci

­X1
D 2

S ­Ci

­X1
DS ­Ci

­X2
D

···S ­Ci

­X1
DS ­Ci

­X3M
D
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3

S ­Ci

­X1
DS ­Ci

­X2
D · · · S ­Ci

­X1
DS ­Ci

­X3M
D

S ­Ci

­X2
D 2

· · · S ­Ci

­X2
DS ­Ci

­X3M
D

···
···

···S ­Ci

­X2
DS ­Ci

­X3M
D · · · S ­Ci

­X3M
D 2 4

X0

. @A9#

Note that the second derivatives of the constraint functions do
not appear in Eq. [A9] because they multiply the constraint
functions, which vanish atX0. The inversion of the matrix on
the right side of Eq. [A9] is equivalent to the solution to the
following set of linear equations involving “dummy” un-
knownslk and arbitrary constantsdi

O
j51

N O
k51

N O
s51

3M S­Ej

­Xi
D

X0

~SE
21! jkS­Ek

­Xs
D

X0

Xs

1O
k51

6 S­Ck

­Xi
D

X0

lk 5 di, i 5 1, . . . , 3M [A10]

O
j51

3M S­Ck

­Xj
D

X0

Xj 5 sk
2lk, k 5 1, . . . , 6. [A11]

The desired variance matrixSX is found from the solution to
Eqs. [A10]–[A11], in the limit whensk tends to zero, by
truncating the following (3M 1 6) 3 (3M 1 6) matrix to the
order 3M 3 3M

The matrix (­E/­X)X0

T SE
21(­E/­X)X0

is singular because of
interdependence of coordinates. The inversion is not possible
without augmenting that matrix with blocks containing the
derivatives of the constraint functions.

The most likely structure,X0, is found as the position of the
maximum of the functionp(XuE 5 E0), with the additional
requirement that the constraints are satisfied atX0

­p~X uE 5 E0!/­X uX0 5 0, C~X0! 5 0. [A13]

The first condition is equivalent to

­ ln p~X uE 5 E0!/­X uX0 5 0 [A14]

becausep(XuE 5 E0) is nonnegative and ln(p) increases
monotonically withp. The logarithm is used to separate the
terms that make upp(XuE 5 E0) (cf. Eq. [A5]). The search for
X0 starts by expanding the conditions (Eqs. [A13], [A14]) into
a Taylor series around an initial guessX(1):

­ ln p~X uE 5 E0!

­X U
X0

5 0 5
­ ln p~X uE 5 E0!

­X U
X(1)

1
­2 ln p~X uE 5 E0)

­X 2 U
X(1)

~X0 2 X(1)! [A15]

C~X0! 5 0 5 C~X(1)! 1
­C
­X

U
X(1)

~X0 2 X(1)!. [A16]

Q21 5

FS ­E
­XD

X0

T

SE
21S ­E

­XD
X0

G 3
S­C1

­X1
D S­C2

­X1
D · · · S­C6

­X1
D

S­C1

­X2
D S­C2

­X2
D · · · S­C6

­X2
D

···
···

···
···S ­C1

­X3M
D S ­C2

­X3M
D · · · S ­C6

­X3M
D 4

[A12]

3
S­C1

­X1
D S­C1

­X2
D · · · S ­C1

­X3M
D

S­C2

­X1
D S­C2

­X2
D · · · S ­C2

­X3M
D

···
···

···
···S­C6

­X1
D S­C6

­X2
D · · · S ­C6

­X3M
D 4 3

0 0 · · · 0
0 0 · · · 0
···

···
···

···
0 0 · · · 0

4

21

.
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The derivatives in Eq. [A15] are found from the expression (cf.
Eq. [A5])

ln p~X uE 5 E0! 5 const2 1
2

@E~X ! 2 E0#
TSE

21@E~X ! 2 E0#

2 O
k51

6

lim
sk30

@Ck~X !2/~2sk
2!# [A17]

and their explicit forms are

­ ln p~X uE 5 E0!

­X
5 2 S ­E

­XD T

SE
21@E~X ! 2 E0#

2 O
k51

6

lim
sk30

FCk~X !

sk
2 S­Ck~X !

­X DG
[A18]

­2ln p~X uE 5 E0!

­X 2 5 2 S ­E
­XD T

SE
21S ­E

­XD 2 O
k51

6

lim
sk30

3 F 1

sk
2 S­Ck~X !

­X D ^ S­Ck~X !

­X D TG .

[A19]

Equation [A15] can therefore be rewritten as

HS ­E
­XD

X(1)

T

SE
21S ­E

­XD
X(1)

1 O
k51

6

lim
sk30

3 F 1

sk
2 S­Ck~X !

­X D
X(1)

^ S­Ck~X !

­X D
X(1)

T GJ ~X0 2 X(1)!

5
­ ln p~X uE 5 E0!

­X U
X(1)

. [A20]

Equation [A20] is further transformed as

S ­E
­XD

X(1)

T

SE
21S ­E

­XD
X(1)

~X0 2 X(1)!

1 O
k51

6

lkS­Ck~X !

­X D
X(1)

5
­ ln p~X uE 5 E0!

­X U
X(1)

, [A21]

wherelk has the meaning

lk 5 lim
sk30
X3X0

S­Ck

­X D
X(1)

SX0 2 X
sk

D 5 lim
sk30
X3X0

SCk~X !

sk
D .

[A22]

When Eqs. [A16] and [A22] are combined into one matrix
equation

3 S ­E
­XD

X(1)

T

SE
21S ­E

­XD
X(1)

S­Ck~X !

­X D
X(1)

T

S­Ck~X !

­X D
X(1)

0 4
3 F ~X0 2 X(1))!

L G 5 F S­ ln p~X uE 5 E0!

­X D
X(1)

2C~X(1)!
G

[A23]

then lead to Eq. [3] (main text).
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