JOURNAL OF MAGNETIC RESONANCEL35,454—-465 (1998)
ARTICLE NO. MN981564

Analysis of Error Propagation from NMR-Derived Internuclear
Distances into Molecular Structure of Cyclo-Pro-Gly

Zeljko Dzakula,** Nenad Juranid Michele L. DeRider,* William M. Westler,*
Slobodan Macura, and John L. Markleiy*
*National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, 420 Henry Mall, Madison, Wisco

53706; tDepartment of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic/Foundation, Rochester, Minnesota 55905;
and tDepartment of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706

Received February 19,

Analytical expressions have been derived that translate uncertain-
ties in distance constraints (obtained from NMR investigations) into
uncertainties in atom positions in the maximum likelihood (ML)
structure consistent with these inputs. As a test of this approach, a
comparison was made between test structures reconstructed by the
new ML approach, which yields a single structure and a covariance
matrix for coordinates, and those reconstructed by metric matrix
distance-geometry (MMDG), which yields a family of structures that
sample uncertainty space. The test structures used were 560 polyhe-
dra, with edges of arbitrary length containing up to 50 vertices, and
one polyhedron, with 100 vertices; randomized distance constraints
generated from these structures were used in reconstructing the
polyhedra. The uncertainties derived from the two methods showed
excellent agreement, and the correlation improved, as expected, with
increasingly larger numbers of MMDG structures. This agreement
supports the validity of the rapid analytical ML approach, which
requires the calculation of only a single structure. As a second test of
the ML method, the approach was applied to the determination of
uncertainties in the structure of a cyclic dipeptide, cyclo(DL-Pro-Gly)
(cPG), derived from NMR cross-relaxation data. The input data were
interproton distances calculated from NOEs measured for a solution
of the peptide in 2:1 DMSO:H,O at —40°C (so as to yield large
negative NOES). In order to evaluate effects of the quality of the input
spectral parameters on the precision of the resulting NMR structure,
information from the covalent geometry of cPG was not used in the
structure calculations. Results obtained from the analytical ML ap-
proach compared favorably with those from the much slower ran-
dom-walk variant of the Monte Carlo method applied to the same
input data. As a third test, the ML approach was used with synthetic
structural constraints for a small protein; the results indicate that it
will be feasible to use this rapid method to translate uncertainties
associated with a given set of distance restraints into uncertainties in
atom positions in larger molecules.  © 1998 Academic Press
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INTRODUCTION

Structures of biological macromolecules derived from NMR
data are based primarily on interproton distances deduced fro
multidimensional cross-relaxation (NOESY) spectia 4. A
starting model for the structure can be determined from distance
geometry calculations from crude distance estimates, and then t
measured NOE intensities can be converted into refined interpra
ton distances by application of the full relaxation matrix (FRM)
approach3-5). These refined interproton distances finally can be
used as experimental constraints that coerce the macromolecu
structure into a more or less well defined conformational subspac
6, 7).

NOE intensities and interproton distances are determine
experimentally only to within fairly broad error limits, and
the uncertainties arise from a variety of sourc&s. (The
problem that we address in this paper is how these error
translate into uncertainties in atomic coordinates,, how
to find the family of structures that satisfy the given ex-
perimental data set. This problem has been addressed |
several different approaches, all of which are deficient in
one way or another. The conventional approach, consistin
of random generation of families of structures consisten
with the input data, is time-consuming and potentially un-
reliable, because the methods for structure determinatio
may have limited capabilities for sampling conformational
space. Methods that compare back-calculated NOESY spe
tra with an original experimental spectrum solve only one-
half of the problem: even if the derived structure back-
calculates into the original spectrum perfectly, it is not
known whether other structures, possibly quite different,
will back-calculate into the same spectrum. In addition, one
can encounter the paradox that the poorer the original spe:
trum, the better the comparison between the original an
back-calculated data. Similarly, refinement methods base
on calculating gradients of peak volumes with respect tc

dnterproton distances9( 10 fail to find the size of the
conformational subspace of proton pairs with small gradi-
ents when the minimum of the penalty function is broad.
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Both the heuristic approach based on random sampling off (X™)T X, . . . A" =[(X)T 0--- 7" — Q 'R, [3]
distances with the use of doubly iterated Kalman filtelr)
and the Monte Carlo approacB,(12 are computationally
costly. Few studies have taken into account the great v

ability in the signal-to-noise of the original cross-relaxatio X dth . likelihood st ithi
data in assessing errors in individual distance constraints G VErges toward Ine maximum Ikelinood S r.UCtMBEW' na
few steps provided thdE is an approximately linear function of

this paper, we present a direct method, based on the m I_The desired variance matri&, is found by truncating the
e . X, "
mum likelihood approachl@), for translating the experi 1 6) X (3M + 6) matrixQ o the order B1 X 3M. Finally,

mental NMR observations and their associated errors int ¢ that is statisticall ble t h aom *
uncertainties in atomic coordinates. € area of space [hat IS stalistically accessibie 1o eac m

(k=1,...,M)is visualized approximately by drawing an ellip-
soid centered at the most likely atom positioQuf Yio: o) and
determined by the X 3 submatrixS, from the diagonal of the
H@trix Sx. The submatriceS, are composed of the variances and

molecular structure, collected in the column vecErin- covariances of coordinates of the aténfll). The axes of the

clude interproton distances derived from NOEs and dihedr%“ipsc’id coincide with the principal axes of the.ma@% and the
angles obtained from spin—spin couplings. The veEaiso lengths of the axes are square roots of the elgenvalu6§.qf o
contains the bond lengths, valence angles, chiralities, andThe ML procedure described above computes uncertainties |

artesian coordinates, and so its results depend on the choice
ture of the molecule. The variances and covariances of t frame of reference. This unwanted dependence on the arbitre

experimental measurements along with uncertainties in ne oice of the frame of reference is eliminated by extending the
covalent constraints, are contained in the variance maix analysis to the chemically relevant internal descriptors of the

whose dimensions amé X N, whereN represents the IengtH“c’leCUIar geometry, such as dihedral angles. These internal ¢

of the vectorE. The 3V nuclear coordinates of thd atoms °rdinates are invariant to the choice of reference frame. Th

in the moleculé are gathered in the vectoand arranged so variances and covariances in dihedral angles or other geomet

that X - x. X =y, andXy = 7, (k = 1 M escriptors (vectofP) of the molecular structure can be found
3k—2 T ~kr N3k—1 T Jkr 3k T “k - yore e

Only 3M — 6 coordinates are independent. Six constrai ?S'ly 14 as

functions,C,(X), . .., Cg(X), assembled in the vect@, are

needed to account for three orientational and three transla- Se = (9®/9X) TSy (a®/9X). [4]
tional degrees of freedom of the molecule as a whole.

Constraints are satisfied when all the constraint functions . . .
. . The assumption that second- and higher-order terms in th
become equal to zero. The goal is to find the set of vaIues.Pf

the coordinatesX,, that satisfies simultaneously the exper-aylor Expansion OE(X) are r_neghglbl_e S essential for successful
. . evaluation of both the maximum likelihood structure aBg
imental measurementg, and the constraint€, and to

. . . . Cross-relaxation rates are strongly nonlinear functions of the
estimate the matrix6y of variances and covariances Xf, : o : :
. . o relevant coordinates within the interval &f0.5 A, whereas dis-
knowing E, and the matrixSg. The determination of the : : . L
: . . . .~ tanced; often vary almost linearly with coordinates within much
most likely structure is achieved on employing the matrices. ) : . .
(Appendix; also seel() wider ranges. The expressions that are available for the fir:
' derivatives of NOE intensities with respect to coordinaged ()
T ) can be used only when the distance erédg are relatively small.
0= (aE) —1( dE) Finite distance errors require computation of the second derive
X0

aX = lox tives, which would render the method impractical. That is the

hereA, i = 1,..., 6 areintermediate results of no interest.
quation [3] is used iteratively, and the iterated solutf

THEORY

The experimental observations used to reconstruct t

planarity constraints that are imposed by the covalent str

X ()
reason why the present method calculates error propagation fro

N
Q= [ /QO o (0C/9X)xo ] [1] internuclear distanceB;, which are “secondary” experimental
(6C/9X)X 0 observations, rather than from the cross-relaxation rates, whic
are the “primary” experimental daté4). Therefore, thé\ X 3M
and vectors matrix (0E/9X)x , used above, contains the elements
aE\T Ro) ]
R, = (ax) StYE - Ey), R= [ _é ] . [2] [(0D/ax) (aDylay) (0Dlaz)]x,
0) (0)
: X =[x — X Yi—Yy 4— Zj]xo(ﬁik - Bjk)/Dij- [5]

where0 is a zero matrix of dimensions 8 6 (cf. Appendix).

Initially, Eqgs. [1]-[2] are evaluated using a gue$® for the where & = 1 if i = ], O otherwise. We have chosen to
coordinates. The initial guess is improved by employing thestimate the uncertainties in the distances.,(the diagonal
expression elements of the matrisg) from the lower and upper bounds,
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L;; andUj;, respectively, assuming that distances are uniformiyas included. For each polyhedron size, between 5 and 15 pol

distributed within their limits: hedra were constructed with their vertices positioned randoml
within a cube, 20 A/edge. The errors in distances were confined 1
(8D%) = (U — Lp¥12. [6] +0.6 A. The ML approach was applied both to reconstruct the

known target vertex positions (from the exact distances) and t
calculate their uncertainties (from the uncertainties in these di
tances). The MMDG ensembles were generated in the usu
anner in which protein structures are calculated from NMR date
r@ounds were imposed on distances in such a way that Eq. [6] w:
I§g1tisfied; triangular inequalities were used to smooth both uppe
and lower bounds; trial values for distances were generated ra
domly within the smoothed bounds and used as inputs for MMDC
to reconstruct the initial polyhedra. No metrization was employed
M M M The embedded structures were projected into three dimensiol

CX) =2 % CX)=2 v CoX)=2 z [7land regularized to eliminate violations of distance bounds. Suc
k=1 k=1 k=1 cessfully regularized structures were accepted, while those wit

residual violations or with incorrect chiralities of substructures

and that the axes of the reference frame coincide with t%re discarded, and the procedure was repeated until 100-5
principal axes of the inertia tensor structures were accumulated for each polyhedron. As an examp
an MMDG ensemble created for a sextahedron is shown on Fi

The matrixQ, (Eqg. [1]) is singular because of the interde
pendence of the coordinates. The inversiorQgf(Eq. [3]) is
made possible by augmenting it with the blocks containi
derivatives of the constraint functio(X) (Eqg. [1]). A con-
venient choice of constraints includes the condition that t
origin is located at the center of mass

M M 1A, together with the ML results.
C.(X) = E XYk Cs(X) = E XiZi, In all the polyhedra of all different sizes, the variances anc
k=1 k=1 covariances of coordinates calculated with the ML and MMDG

approaches were virtually the same when the ensembles we

M sufficiently large (Figs. 1B, 1D). However, as the complexity

Ce(X) = 2 Vi 8] of the system under study increased, sampling of conforme

K=t tional space by MMDG structure generation required progres

sively more time, encountered more difficulties, and becam

When the constraints are given by Egs. [7]-{8], the<8M  |ess reliable than the ML method. As an illustration, we ran-

matrix (9C,/dX)x, becomes domly assembled subsets of structures from each ensemble a
calculatedr? between the ML covariances and the MMDG

dCy covariances computed from the subsets. The variations of the:
<ax) “ r2 values as functions of the sub-ensemble sizes are display:

in Fig. 1C. In all cases;? increased monotonically with the
sub-ensemble size, suggesting that eventually MMDG result

1 0 0 1 o --- 1 0
01 00 o - 0 0 must converge toward the ML results and thus validating ML.
0 010 1 .- 1 These examples reinforce two conclusions: (a) ML gives the
yi X2 0y, 0 ---y 0 " same results as MMDG in the limit of infinitely large ensem-
zz2 0 X4 2 0 %X -2y 0 Xy bles, and (b) ML does so in a much shorter time.

0 zzys 0 oy, --- 0 zy ywm 1y

’ [gﬁyclic Dipeptide cyclo(DL-Pro-Gly)

0
1
0
X2

As a second test of the method, error propagation from NOI
EXAMPLES measurements into the positions of hydrogen atoms was examin
in the cyclic dipeptidecyclgDL-Pro-Gly) (cPG). The dipeptide
Arbitrarily Generated Polyhedra consists of 21 atoms, including 10 protons. The geometry of th

. ) dipeptide is completely determined by its covalent structdrieis
As an initial test of the method, comparisons were made be-

tween strUCtur?S and their uncertainties C_alcmat(_ad f_rom the Samerhe optimal independent set of distancesiGall was obtained by analyzing
set of input distances by th? new maximum "k_e"hOOd (MLjhe relevant pentangles (methaih the text). There areN8— 6 = 57 independent
approach and by the conventional metric matrix distance-geomgtances and they connect the following pairs of atoNis;-Cgo NergHoro
try (MMDG) method. In order to keep the calculations small, biesCho NersClio NeroCoro Npro—H%f‘o Npro—H%?so Ner Corg Nor Gy
. . . . ’ 3 « o o y
still test possible effects of differing geometry on the outcom@groﬁglv' (’\:‘gro_‘(?:'y' g;rfi‘gpw gf’rfNCPro g;rcl‘cngo gf’rfgpro Sgroﬁgw
both methods were applied to a series of 563 arbitrarily genera _CZ"’ CBBS B HBR B OB GBS B
. . . ro ro Pro ' 'Pro Pro Pro Pro “~Pro Pro Pro Pro Pro Pro “~Pro
polyhedra. The sizes of polyhedra (their numbers of vertlcqﬁrso_Hgfeo HES,CY,o, ChgHIR, C2 s HS, CloHER, O HES, HYR HZS

Pro Pro Pro Pro Pro Pro

ranged from 4 to 50; in addition, one polyhedron with 100 verticegR-Ca,, C2sH, C3sH, CosChyr ChrsOpro ChroNaiys ChrgHel:
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FIG. 1. (A) Areas of uncertainties in vertex positions in an arbitrarily constructed sextahedron, as calculated by the ML approach (ellipsoids) and as ¢
from the MMDG ensemble of structures that satisfy the constraints imposed on internode distances (points). (B) Correlation between covariances of coc
of the sextahedron obtained from a discrete ensemble (abscissa) and with the ML approach (ordira@®P@5). (C) Thevariation of correlation coefficient
valuesr? between ML and MMDG covariances of coordinates in 563 polyhedra as a function of the size of MMDG ensembles. The gray area represer
standard deviations around the avera§ealues. Maximal and minimai® values are also shown as functions of the ensemble sizes. (D) Correlation betwe
covariances of coordinates of 563 polyhedra obtained from discrete ensembles (abscissa) and with the ML approach (ordinate). The gray area repre:
standard deviation around the average (continuous line in the center). The ideal straight line with a slope of 1 is shown for comparison, as well as the 1
variation. More than 10data points were used after being divided with normalization factors of the formdfexd)] — min[8(xy2], which were different
for each polyhedron and which served to scale the coordinate covariances for various polyhedra so they can fit the same display window.

was demonstrated by using X-PLORS| to calculate the posi- tal NMR data and the quality of the resulting structure, we
tions of all atoms from tight bounds imposed on all covalemiminated the geometric information contained in the covalen
distances (bond lengths, distances between geminal neighbstigicture by considering only the substructure consisting ex
and peptide bond planarities) and no bounds at all on non-covaleiuisively of protons €PGH). The uncertainties in the structure
distances. The resulting all-atom structure, labet@@all, is of cPGH were calculated, using as input only the interproton
well-defined and rigid, in spite of the fact that it was calculated itlistances derived from a full relaxation matrix analysis of
absence of any experimental NMR data. Thus, when the covalRIIESY spectra collected at a mixing time of 80 ms (Table 1).
information is used, experimental errors become completeiyie interproton distances were classified into six categorie
masked by the high precision of the covalent bond lengths, \@epending on whether the values calculated from the ful
lence angles, and planarity constraints. relaxation matrix fell within one of the following ranges2.0

In order to establish relationships between input experimeR-2.0-2.5 A, 2.5-3.2 A, 3.2-4.0 A, 4.0-5.0 A, ane5.0 A.
The following lower and upper bounds pairs were imposed or
. R . = s ’ the distances belonging to the first five classes: (1.6, 1.9) A
CoraCaiy OprNon: NayHaiy NoyCoy, NowHay, NeyHes NoyCon 59 3.0) & (2.2, 3.7) A, (2.8, 4.8) A, and (2.3, 6.6) A,
Hay—Cay» Cay—Hay, CayHaEy, C&y—Ogyy, HayHGy, andHE -Cg,,. These . . . .
independent distances are all known from the covalent structure and their unk&SPectively. The upper bounds for the distances in the sixt
tainties are negligibly small. class were obtained by adding 1.5 A to the value obtained fror
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TABLE 1 the full-relaxation matrix calculations, and their lower bounds
Interproton Distances in cPG? were fixed at 3.2 A. Thus defined, the bounds ranges obtaine
dard from the experiment are identical to those inferredc®Gall
Lower — Upper - standard oy arjap with them significantly. None of the interproton
bound8  boundé Distance8  deviation§ . . . .
Proton1  Proton2  (A) A) A) A) distances |¢PGaIIV|oIates_the experimental lower and upper
bounds. Prior to use, the distance bounds were smoothed usi
HEo HES 2.0 2.9 2.4 0.3 the triangular inequality7).
Hero H@E 2.2 3.7 3.0 0.3 An attempt was made to create an MMDG ensemble in th
Egro :%/’/lg ;g i-; ;-g g-i same fashion as for the arbitrarily generated polyhedra. How
HE'O Hg’;;’ 28 48 34 04 ever, the gaps between lower and upper bounds on interprotc
ng‘; HE?Z 28 4.8 3.9 0.4 distances were large enough to allow many different combina
HEo Hey 2.8 4.8 3.9 0.4 tions of chiralities for four-proton subsets withicPGH.
Hero Hélzy 2.2 3.7 31 0.3 MMDG ensembles created in the usual way contained, there
Egg }:';ég ig i-g ‘l‘-g 8-‘1‘ fore, a huge number ofPGH structures with wrong local
HZ'SO Hi;? 20 29 24 03 chiralities and only a negligible fraction of structures with
HESZ HE?Z 22 37 2.7 0.3 correct chiralities. This situation was not improved when a
HES H2R 3.2 5.8 4.1 0.4 penalty term for chiralities was incorporated into the regular-
H’SZ) Hézo 3.2 5.6 4.0 04  jzation procedure.

B . .
Egg H'igly 22 g-g gg 8-2‘ Therefore, to enable comparison between ML and a statis
HZ'SO H‘j'sy 39 8.2 59 04 tical ensemble, a procedure was devised which produced a hi
HES o 29 37 3.0 03  vield of structures that belong to the same classRGH. This
HER HES 2.0 2.9 2.4 0.3 procedure, which we call “restrained random-walk Monte
H’SE, H%Z, 2.8 4.8 3.9 0.4 Carlo” (rrwMC) is somewhat similar to theONCOORD

B . .

Egg :Phr,o gg Z-g jé 8-2 method of de Grooet al. (17); the difference is thatrwMC
HZ'F? HQS'V 39 6.8 50 04 makes a random search outward from an initial structure t
ngrg HZ% 3.2 7.0 5.2 0.4 probe conformational space until violations are found, wherea
HER HES 1.6 1.9 1.8 0.1 CONCOORD starts from a conformational excursion from a
H%Zo H%Z, 2.0 2.9 2.4 0.3 RANDOM initial structure that leads to violations and searches
E;F”,;o :Phr,o gg gg g-g 8-2 randomly until the violations vanish. The starting structures
R R 3.2 24 e 04 used withrrwMC were those found iePGall. Small steps are
HoR HZ% 32 86 6.2 o4  made in randomly chosen directions, with the step siz@.Q1
HES H2R 2.2 3.7 2.8 0.3 A) small when compared with the uncertainties in the inter-
H“Fézo Hézo 2.0 2.9 24 0.3 proton distances. If a step results in a violation of a distanc
E%rso H'igly 22 g-g g-i 8'451 bound, the procedure bounces back, ensuring that the distan
H$’§ H‘j'sy 39 8.9 6.4 04 bounds are never violated and that the whole trajectory remair
oR 53 confined within the same class of conformers as the initial
HaR HAS, 16 1.9 1.8 0.1 _ _
HER HEy 3.2 8.0 5.8 0.5 correct conformationgPGall). To prevent the trajectory from
HEEO Hé.zy 3.2 6.3 4.6 0.5 remaining too close to the initial conformation, the procedure
Egéo HH%A‘y 22 s; gg 8-‘5‘ retracts only the increments to coordinates of the proton pai
H§g° HQS'V 39 6.6 48 05 whose distance bound was violated. Other protons, not in
Hgi HZ% 3.2 6.4 47 0.5 voI_ved in (_ji_stance bounds_viole}tio_ns, ret_ain their newly ac-
HYy Hak 2.2 3.7 27 0.3 quired positions. Although, in principle, this could create new
HSy Hay 2.0 2.9 23 0.3 violations of distance bounds between protons whose positior
HEY HEY 16 19 18 01  are updated and those whose coordinates were retracted,

rarely happened in practice. Also, it turned out that correc
@The bounds on interproton distances were calculated from NOESY dgBiralities were maintained without the need for any specia
acquired at 500 MHz (Bruker AMX) for a mixing time of 80 ms at 233 K. They, i ations. All the relevant chiralities remained correct
sample was 50-M cycloDL-Pro-Gly) (cPG, Sigma) dissolved in 2:1 volume . .
mixture of DMSO-¢:H,0. At this temperature, the dipeptide behaves like ghrou_ghout the restrained random walk, which enabled fas
small protein at room temperature in wateg & 4 ns, as estimated from the Creation of a largerwMC ensemble (710 structures). For each
cross-relaxation rate of 7°$ between geminal protons). Errors in all NOEmember of the ensemble, the Brownian-like motion freeze:
intensities were estimated from NOESY cross-peak volumes at zero mixigter g randomly selected number of steps. The length of th
gme t(;) be=0.015. Triangular smoothing was applied both to upper and 'OWffajectory ranged from 1,000 to 10,000 steps. Termination o
ounds. .
® Interproton distance values were derived fidP@all calculated by X-PLORIE). th_e _Conformat'on space search left the structure somewhe
© Standard deviation for interproton distances were derived from the staf¥¢ithin the “allowed” area of the space that needed to be

tical ensemble cPGrrw. sampled. TharwMC ensemble was large enough to fill this
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FIG. 2. (A) Conformational space of the proton subsystentyaflg DL-Pro-Gly) (cPGH) consistent with the experimental NOE data, estimated using the
ML approach (ellipsoids) andwMC discrete ensemble (dots). The discrete ensemble consists of structures whose interproton distances are consistent v
NOESY spectrum recorded at 80 ms mixing time (Table 1). The structure of the molecule as acR@dd)(is superimposed on the proton substructure. (B)
Correlation between covariances and variances for coordinates obtained from the discrete ensemble of structures (abscissa) and those obtained analytit
the ML approach (ordinateyf = 0.862). (C)Correlation diagram of two consecutive dihedral anglg@s;-HES-HER-HXR andHES-HER-HR —HY3, Dots
are values of the dihedral angles obtained from the discrete ensemble of structures. The ellipse was calculated from the ML matrix of covariances of the
angles (Eq. [4]). (D) Covariances of 3192 pairs of consecutive torsion angles within the proton subsyXBth ¢btained from the discrete ensemble of
structures (abscissa) and with the ML approach (ordinafe)<(0.917).

whole area (dots in Fig. 2A), enabling a meaningful compaiimposed on these for comparison. The correlation found be
son with the ML results (ellipsoids in Fig. 2A). tween the ML results and the covariances from theMC

In most cases, the distribution of distances within the diehsemble improved with the size of tmewMC ensemble,
creterrwMC ensemble was nonuniform and narrow around ttreaching the value? = 0.862when the complete ensemble
most likely value of a distance. To account for this, we est{710 structures) was used for the comparison (Fig. 2B). Thi
mated the input uncertainties in distances from the discrdétend suggests that in the limit of an infinitely larggvMC
ensemble, rather than using Eq. [6]. The ML covariances fensemble, the results from two methods will converge. The
the proton Cartesian coordinatesdRGH were derived from advantage of the ML approach is obvious.
the dispersions in interproton distances using Egs. [1], [5], andFigure 2C shows correlations between two consecutive di
[9]. The center of mass and products of inerticPGHwere hedral angles in thePGH proton subsystem. The ellipse is
fixed in these calculations. When Eg. [3] was used with expearalculated from covariances of the two torsion angles (Eq. [4])
imental interproton distances, the ML proton positions wekghereas the points represent the values of the dihedral angl
close to those found inPGall. ML proton coordinates calcu- from the discrete ensemble of structures. Figure 2D show
lated with interproton distances extracted fraRGall are covariances of 3192 consecutive pairs of dihedral angles withi
identical to those itPGall (Fig. 2A). The ellipsoids in Fig. 2A the proton subsystem of cPG calculated from tneMC
visualize the ML uncertainties in the proton coordinates @nhsemble (abscissa) and with the ML approach (ordinate). Th
cPGH.The structure of the whole moleculeRGall) is super- correlation found between the covariances obtained by the tw
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methods (* = 0.917 for allprotons;r? = 0.968 forprotons atom positions are grossly overestimated. However, in spite ¢
within the proline ring) shows that the ML approach can béealing with an ill-conditioned matrix, the matrix inversion
applied successfully to determine uncertainties in the descnjpelded covariances in coordinates of the remaining atoms th¢
tors of the molecular geometry that are invariant to the choieeere largely unaffected by the lack of information localized at
of the frame of reference. The dependence of the linear cortiee underdetermined groups (data not shown).
lation coefficientr? on the size of the MC ensemble is similar The procedure described here is valid within the immediate
to that observed for Cartesian coordinates. vicinity of the maximum of the probability distribution for the
In terms of computational cost, the limiting step of the Mlcoordinates. It employs derivatives and therefore only account
procedure is inversion of the matrix Q (Eq. [1]). To tesfor the continuous contributions to the overall uncertainties in
whether the method will be useful for evaluating protein strucoordinates. When the procedure is applied to only one, amor
tures determined from NMR data, we applied ML to simulateskveral, distinct local probability maxima (discrete classes o
NOE constraints plus the usual covalent constraints for a smadinformers), the uncertainties contributed by the other discret
protein (turkey ovomucoid third domain, OMTKY3).classes of conformers remain unaccounted for. One way to a
OMTKY3 has~800 atoms and the size of the inverted matrigress this problem would be to identify the optimal setf-3 6
is =~2400 X 2400. Both the MATHEMATICA (6) and the independent distances, use them to reconstruct the whole set
FORTRAN implementations of the ML method required onlyliscrete classes of conformers, and apply the maximum likelihoo
about 10 min of CPU time to invert the matrix on SGI Iris omethod to each probability maximum separately. A set of dis:
on IBM RISC R/6000 workstations. The precision of théances is independent if the rank of its Jacobian with respect t
inverted matrix was excellent, as judged from the unit matrpoordinates isN — 6. It is optimal if the sum of dispersions of its
obtained as the product of the original and the inverted matealements is minimal compared to all other independent sets. Whe
ces Q, even with the single precision FORTRAN implemerthe structure contains several dozens of points or less, as in cP
tation (data not shown). The fact that the matrix Q is compos#te optimal independent distances can be selected from the d
of sparse matrices implies that it should be possible to usmces with minimal error ranges by scanning pentangles th:
sparse matrix algorithms to achieve a significant reduction @ontain the “candidate” distance and by using the fact that
the time needed to invert Q. When Eq. [3] was used to impropentangle contains one dependent and nine independent distan
a distorted OMTKY3 structure which contained constrair{tnethodA). The inclusion of a dependent distance into the inde-
violations, the resulting ML structure of OMTKY3 had nopendent set is thus prevented. We used methamlidentify the
constraint violations. This suggests that ML could be useful aptimal set of independent distancexiPGall (see Footnote 3).
a refinement step. Independent distances in larger molecules can be identifie
All the calculations (ML, bounds smoothing, MMDG, reg-quickly by the “anchoring” algorithm used by Altman and Jar-
ularization,rrwMC, full relaxation matrix calculations, selec-detzky (L) in their stepwise inclusion of structural motifs in the
tion of independent distances, and molecular graphics) we@urse of heuristic structure building (meth8)d Once identified,
performed with our own software written in MATHEMATICA the independent distances can be used to build the structure, eitt
or FORTRAN (18). by constructing pentangles (meth&gor by successive anchoring
of new points (method). In cases where a pentangle within the
DISCUSSION structure can adopt two different configurations, the ambiguity
can be removed on the basis of chirality constraints (if available
The somewhat arbitrary choice of lower and upper distant® that pentangle), by tightening the error ranges on the distanc
bounds icPGHwas made to imitate the procedure in wide useithin the pentangle by means of tetrahedral bounds smoothin
for proteins (9). In the present form of the approach, one caor by analyzing inconsistent distances from the pentangle to poin
account for internal molecular mobility by increasing the errdhat have already been “anchored.” A combinatorial explosion o
ranges on distances, as is done with pseudoatoms. When dasyformations thus can be avoided. If the input data set is suc
tance constraints imposed on atoms are insufficient to fix théiat ambiguities cannot be eliminated, the procedure results i
positions, i.e., when they allow free rotation of groups ofmultiple structures that are representative of discrete classes
atoms, the areas of maximum likelihood for such atoms atenformers. Although these are probably not the most likely
rings. This violates the starting assumption that the probabiligfructures, they can be used as starting points in the iterati
distribution is unimodal and can be approximated by a Gausearch for the maximum likelihood structures within their respec
ian (cf. Appendix). The rows and columns of the mat@){Eq. tive discrete classes.
[1]) which correspond to the coordinates of these atom groupsOur approach analyzes the precision of NMR-derived mo.
are inversely proportional to the relatively large error ranges lecular structures, as opposed to their accur&ty 21). The
the distances connecting them to the rest of the molecule. Theuristic approach to structure building, which makes use o
elements of these rows and columns are therefore much smaflaiman filters (1), yields uncertainties in coordinates as a
than the remaining matrix elements, and the condition numb®product. That approach, in analogy to our method, use
of the matrix is large (compared to the inverse of the machingatrices of covariances to determine ellipsoids of uncertaintie
precision). The calculated uncertainties in the underdeterminiadatomic positions. The essential difference between the twi
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approaches is that the heuristic method bases its estimate& pfepresents the value & obtained in the actual measure-
covariances on iterative sampling of distances, whereas the Mient. The diagonal elements of tNeX N variance matrixSg
procedure uses analytical formulae to determine the coveaaire squared experimental errors. Th&l Toordinates are
ances in a single computational cycle. Similarly, the advantageuped in the vectoK = [X; V; Z; - Xy Ym Zu]- The
of the ML approach over Monte Carlo (MC) simulationgnaximum likelihood approach estimates the most likely value:
(8, 12 again is that ML needs only singlecycle of compu- of the coordinatesX,, and their variance-matrix$y, as the
tation to evaluate the size of the conformational space copwsition and the width, respectively, of the peak of the
patible with the experimental data. A prohibitively large numposteriori conditional probabilityp(X|E = E,). The function
ber of lengthy computational cycles must be performed with(X|E = E,) represents the probability density férwhen the
MC to obtain comparable results. measured valueg, of observable€ are known with experi-
The often-used assumptio®d) that distances of equal lengthsmental errorsS¢. The conditional probabilityp(X|E = Ey) is
have the same error ranges is not always justifa®] Z4. The obtained from the assumed Gaussian conditional probabilit
true error limits on a distance depend on its value, the surrounditigtribution p(X|E = E,) that the experimental observables
cross-relaxing network, and details of the experiment, such as (trgernuclear distances) will take valu& knowing that the
mixing time. Simulations of NOESY data corresponding to ditheoretical parameters (nuclear coordinates) have the véjjes
ferent mixing times indicate, as expected, that the optimal mixing
time varies for different proton pair28, 249 and that the overall _
uncertainty in a given distance increases when the mixing time isp(E|x = Xo) = [\"‘% de(Se)] ™
either too short or too long. Uncertainties in distance constraints % exd—E(E — E))TSZYE — Ep)], [Al]
can be decreased by buildup curve analysis of data acquired at 2
different mixing times or by using specialized pulse sequences,
such as BD-NOESY25) or CBD-NOESY @6), with a single whereE = E(X) andE, = E(Xy).
mixing time. The effects these approaches have on the precisiofTo determingy(X|E = E,), thea priori probability distribution
of structures can now be evaluated by the ML approach in a raffiek, the coordinatesp,(X), is also needed. There is no prior
quantitative manner. knowledge about the atomic coordinates, agdX) is therefore
Although the discussion above has focused on errors pramiform over the whole space allowed. However, the six con:
agated from distances derived from NOE data, errors in mesraints on coordinates reflecting the translational and rotation:
sured couplings can be incorporated straightforwardly into tlikegrees of freedom of the molecule as a whole must be incorpt
procedure. The method is applicable to structures obtaineted into thea priori distribution p,(X). That is achieved by
with any method currently available (for instance MMDG omultiplying the uniform distribution with Dirac delta-functions
simulated annealing). that enforce the constraints on the coordinals. (

CONCLUSIONS .

In summary, this new method of quantifying error propaga- Pap(X) = const H 8[Ci(X)]
tion in NMR structure calculations provides a means to assess '
the reliability of NMR-derived structures. The approach should
be applicable to the validation of conclusions concerning bio-
active conformations and mechanisms of ligand binding or
enzyme catalysis. Moreover, the method should make it pos-

S|k_)Ie _to deS|gn_|mproveq stra_teg|es for NMR structure deteﬁﬁe delta-functions in Eq. [A2] are represented as the limiting
mination or refinement in which the most relevant structur@l

data are collected in the most efficient manner ases of Gaussian distributions with vanishing widths. The
' termsC;(X) stand for the constraint functionsf(Egs. [7]-[8],

main text); a set of coordinatessatisfies the constraints when
APPENDIX: MAXIMUM LIKELIHOOD C.(X) = 0, Vi
i ’ .

WITH CONSTRAINTS

6

[T lim gexp{—ci(X)zl(Zsf)]. [A2]

j=1 si—0 ¥l

_ const
- (2m)®

The determination op(X|E = E,) also requires the knowl-
A molecule withM atoms has Bl nuclear coordinates, butedge of thea priori probab|I|_ty pap(EO) that th? observa_lbles
. . : . will take the value€,. The distributionp,(E,) is the projec-
only 3M — 6 coordinates are independent. Six constram}g . . p :
. |op of the joint probability p(Eo|X) pao(X) of simultaneous
must be considered to account for the mutual dependence_Q P
) : : ) ccurrence o, and X
coordinates. The constraints have been incorporated into Pne
maximum likelihood equations according to the procedure
described by Taupin1@). The numberN of experimental
observations and covalent constraints, gathered in the VEctor Pap(Eo) = | P(Eq[X) pap(X)dX. [A3]
X

must satisfy the conditioN > 3M — 6. The column vector
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Equations [A1]-[A3], combined with the Bayes formula

P(X|E = Eg) Pap(Eo) = P(Eo|X) pap(X)

lead to the following expression for the desiradoosteriori

conditional probabilityp(X|E = E,)

p(EO|X) pap(x)

PXIE = B0 = 1 5 JX) papX)IX

= consg ex —3 (E — E9)"Sg(E — Eo)]

6

x [T lim exd —Ci(X)%(2s?)]

i=1 si—0

1 ENT
= consgexp —5 (X — Xo)' %
o[ 9E
XSg W (X - Xo)

6

x [T lim exd —Ci(X)%(2s?)],

j=1 S—0
where the functional dependence®iupon X

E, (X1, Y1, 21, - s Xns Yms Zu)

E=EX) =

En(X1, Y1, 21, . » Xy Yus Zw)

was approximated by the truncated Taylor series

B oE
E = E(Xy) + (ax) XD(X — Xo)

1 L 9°E

+§(X_Xo) IX2 (X = Xo)+ - -=E(Xy)

Xo
(0E/9%y) (0E4/0 zy)
+ : B ; (X = Xo)
(aEN/a Xl) =t (GEN/E) ZM) Xo

9%E, 9%E,
Ix2 9 X0 Zy

+2(X = Xo)T

0°E, 9%E,
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0’E, 0’E,
(5) - (ovoad
% ; ;
[Ad] az'E2 az'E2
(axla ZM) o (azl%ll)
OZEN aZEN T
(o) Gl
X : ' : X —=Xo) +...

() (2

assuming that quadratic and higher-order terms are negligible
within the (still unknown) region of uncertainties of the coor-
dinates.

Approximating, on the other hand, tlee posteriori condi-
tional probability distributionp(X|E = Eg) with a Gaussian
function

[A7]

P(X|E = Eo) = [ {27 det(S,)] ™
X exp[—3 (X = Xo) 'S (X — X)]  [A8]
and assuming that the variation of the mat&ig* with X is

[A5] negligible, one can find the uncertainties in the coordinates,
Sy, from the width of the peak of(X|E = E,) at X,

. _'azln P(X|E = Ey)
x| ax? XO

94n p
)
[AB] 9inp\/9%np
- )
92n p\[a2np
() ()
d%n p\/a%n p d%n p\/a%np
( 0, )( 0%, ) o ( 0 )( ast)

d4np d4n p\/a%np
X aX? X, 9 X3m

(azln p)I (azln p) . (a'zln p)
X, 9 Xam X3, 1y,
[ /4C,\2
0%,

JE\T _ [E <1 (aci)(aci)
— | -1 — — H _
- <8X> S: (ax)x + > lim 2| % :axz

Xo ) j=1 S—0 7
aC,\ [ aC,
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aC,\ [ aC, The matrix QE/6X)} Sg*(9E/0X)y, is singular because of
aX,) \ 9 Xan interdependence of coordinates. The inversion is not possible

aCi)
9C,\ [ aC, without augmenting that matrix with blocks containing the
(o0 (5.

<3§i1><6X2

9C;\ 2
X,

ﬂ ivatives of the constraint functions.
X L . ! -
he most likely structureX,, is found as the position of the

maximum of the functiop(X|E = E,), with the additional

2

<8C')( 9€, ) ( 96 ) requirement that the constraints are satisfie at
Note that the second derivatives of the constraint functions do IP(X[E = BoloX| =0, C(Xo = 0. [AL3]
not appear in Eq. [A9] because they multiply the constraint
functions, which vanish aX,. The inversion of the matrix on The first condition is equivalent to
the right side of Eq. [A9] is equivalent to the solution to the
following set of linear equations involving “dummy” un-
knowns A, and arbitrary constants d In p(X|E = Eg)/aX]x,= 0 [A14]

N M . becausep(X|E = Eg) is nonnegative and Im) increases
oE; =" ) . : .
> > ax) S 5 ) % monotonically withp. The logarithm is used to separate the
j=1 k=1 s=1 ' S terms that make up(X|E = E,) (cf. Eq. [A5]). The search for
. X, starts by expanding the conditions (Egs. [A13], [A14]) into
B (axk) A= di, =1, M [A10] a Taylor series around an initial guexs":
k=1 X
am dINp(X[E=Ep)| aInp(X|E=E)
9C 2 aX =0= aX
2 a%,) %= s k=1....6 AL %o o
j=1 0
9% In p(x“zE = Ey) (Xo — X©) [A15]
The desired variance matr, is found from the solution to IX XM
Egs. [A10]-[All], in the limit whens, tends to zero, by c
truncating the following (81 + 6) X (3M + 6) matrix to the C(Xy) = 0= C(X®) + ac (Xo— XW),  [AL6]
order M X 3M IX T v
[ /acC, aC, 9Cs T
X, X, X,
dENT __,[9E (‘9Cl> (‘9CZ> (‘9(:6)
W SE W axlz a)(‘z 8).(2
Xo Xo ; : :
( aC, ) ( aC, ) < dCs
Q—l — 8X3M 6X3M 8X3M A [A 12]
[ (aq) (ac:l) ( 9C, > ]
aX;) 9%, 9 Xau
aC,\  [aC, 9C, % % %
: SR 00 -0
8C6 8C6> aCG
aXi) \aX, 9Xau/




464 DZAKULA ET AL.
The derivatives in Eq. [A15] are found from the expressici ( whereA, has the meaning

Eq. [AS])
, aCy Xo— X . Cu(X)
A = lim ((")X) (S) = lim ( S ) .
In p(X|E = Eg) = const— 3 [E(X) — Eo]"SE[E(X) — Eq] S A e “
[A22]

X—Xo X—Xo

6
-2 lslkTo [CX)%(250] [A17] When Egs. [A16] and [A22] are combined into one matrix
k=t equation

E

and their explicit forms are JE T 9E IC(X)\T
X 90X/ o \ X

X (@)

) ] dC(X)
" - - (S;i) SE'[E(X) — Eq ( o )W :

oX
] (aln p(X|E=EO)>

X (@)

X
_C(X(l))

[A18] [A23]

—EG lim

k=1 S0

Cu(X) [3C(X) o [ Xo= X))
e (5] N

8% p(X|E = E;) (9E T _(0E B EG: . then lead to Eq. [3] (main text).
IX? —\ax) TELaxX m
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